Inhibition of phasic but not tonic pituitary secretion by 2-hydroxyoestrone in the rat: evidence of action as an oestrogen antagonist

Author:

Katayama Shigehiro,Fishman Jack

Abstract

Rats with 4-day oestrous cycles, implanted with intracardiac catheters, were injected with 2-hydroxyoestrone at noon on pro-oestrus and their plasma LH levels monitored at frequent intervals thereafter. A dose of 100 μg 2-hydroxyoestrone completely abolished the preovulatory LH rise in four out of ten animals tested, showing no effect in the six others. When an injection of 10 μg oestradiol 1 h before the 2-hydroxyoestrone administration was given all the rats showed an absence of the preovulatory LH surge, while it remained intact in the controls treated with oestradiol only. The principal metabolite of 2-hydroxyoestrone, 2-methoxyoestrone, exhibited no influence on the pituitary gonadotrophin release. Repeated injections of 100 pg doses of 2-hydroxyoestrone to long-term ovariectomized rats produced no change in plasma LH and prolactin levels. In animals primed with oestradiol benzoate, 2-hydroxyoestrone given 1–2 h after the priming dose blocked the phasic release of the pituitary hormones on the afternoon of the 2 subsequent days. The LH and prolactin surges in the primed animals, however, were not affected when the catechol oestrogen was injected 2 h before their appearance. These results indicate that in the cyclic rat exogenous 2-hydroxyoestrone inhibits the preovulatory LH surge when its administration is coincident with the preovulatory oestradiol rise. In the ovariectomized rat 2-hydroxyoestrone inhibits the oestrogen-dependent priming step but does not affect either the oestrogen-independent expression of the induced surges or the tonic secretion of these pituitary hormones. These results indicate a dissociation of central and peripheral activities in this oestradiol metabolite and suggest that this catechol oestrogen functions as an oestrogen antagonist in neuroendocrine events. Since catechol oestrogens can be formed in the brain these pharmacological responses may reflect physiological mechanisms.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3