Hyperprolactinaemia and DNA synthesis in the pituitary gland of the rat

Author:

Burdman J. A.,Calabrese M. T.,MacLeod R. M.

Abstract

Hyperprolactinaemia produced in rats by the transplanted prolactin-secreting tumours MtTW15 and 7315a significantly (P<0·01) inhibited by 70% the incorporation of [3H]thymidine into the pituitary DNA of the host animals. The weight and the DNA content of the glands were significantly (P<0·01) reduced by 30%. The administration of haloperidol, a dopamine receptor blocking agent, to the tumour-bearing rats increased the suppressed DNA replication in the anterior pituitary glands by approximately 560% in the MtTW15-bearing rat and by 100% in the 7315a-bearing animals. Furthermore, injection of drugs which stimulate prolactin release either by blocking the synthesis of dopamine (α-methyl-p-tyrosine) or the re-uptake of dopamine (reserpine) stimulated DNA synthesis by 800 and 100% respectively in the anterior pituitary gland of rats bearing the MtTW15 tumour. In contrast, lisuride, a dopamine agonist, significantly inhibited the incorporation of [3H]thymidine into the DNA of the pituitary gland of normal but not hyperprolactinaemic rats. Chronically administered oestrogens to hyperprolactinaemic rats increased the weight (100%), DNA content (31%), incorporation of [3H]thymidine into DNA (680%) and synthesis and release of prolactin (300%) in the pituitary gland. The incorporation of [3H]thymidine into tumour DNA was several times higher than in the pituitary gland of the host animal and was not significantly modified by any of the above treatments. Likewise the hyperprolactinaemia of the tumour-bearing rats was not significantly changed. In conclusion, we have shown that hyperprolactinaemia inhibits DNA synthesis in the anterior pituitary gland and this inhibition can be reversed completely by a dopamine receptor blocking agent and by hypothalamic dopamine depleting drugs. We propose that dopamine regulates, either directly or indirectly, DNA synthesis in the lactotrophs of the pituitary gland, which may be responsive to negative feedback mechanisms.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3