Strain differences in hypothalamic–pituitary–adrenocortical axis function and adipogenic effects of corticosterone in rats

Author:

Marissal-Arvy Nathalie,Gaumont Alexandra,Langlois Allan,Dabertrand Fabrice,Bouchecareilh Marion,Tridon Claudine,Mormede Pierre

Abstract

Our aim was to explore the nutritional consequences of functional variations in the hypothalamic–pituitary–adrenocortical (HPA) axis in rats. We first aimed to compare the HPA axis activity and reactivity to stress between Fischer 344 (F344) and LOU/C (LOU) strains that differ in food behavior and metabolism. When compared with F344 rats, LOU rats showed lower corticosterone (Cort) levels across the circadian cycle and after restraint stress. Then, we compared the effects of adrenalectomized (ADX) and Cort substitution after ADX on food intake, body weight gain, body composition, and biochemical parameters related to metabolism and HPA axis function between 1) the F344 rat strain, a model of HPA axis hyperactivity and hyperreactivity to stress, and characterized by a large fat mass; 2) the LOU strain, shown to exhibit hypoactive/hyporeactive HPA axis, reduced fat mass, and resistance to diet-induced obesity; and 3) the Lewis (LEW) strain, a third condition of fat deposition (high) related to HPA axis function (low activity/reactivity). The F344 and LEW strains exhibited classical responses to ADX and Cort. On the contrary, LOU rats showed an apparent insensitivity to ADX. Despite the highest effects of Cort related to glucocorticoid receptor (on thymus weight, corticotropin-releasing factor, or corticosteroid-binding globulin), the LOU strain was insensitive to Cort effects on body weight, liver, and abdominal fat mass. These characteristics could be involved in the leanness, insensitivity to diet-induced obesity, and healthy aging in LOU. Our study shows the relevance of comparing the F344, LOU, and LEW strains to cover the complexity of interactions between metabolism and HPA axis function.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3