Calcitonin inhibits osteoclast formation in mouse haematopoetic cells independently of transcriptional regulation by receptor activator of NF-κB and c-Fms

Author:

Granholm Susanne,Lundberg Pernilla,Lerner Ulf H

Abstract

The effects of calcitonin (CT) on osteoclast formation and gene expression have been studied in cultured mouse spleen cells and mouse bone marrow macrophages (BMMs). CT inhibited the formation of multinucleated osteoclasts and resorption pits in spleen cell cultures and BMM as well as in CD115+ CD3 CD45Rsorted BMM cultures, incubated in the presence of macrophage colony-stimulating factor and receptor activator of NF-κB ligand (RANKL). No effect on apoptosis by CT was observed. CT did not affect the mRNA expressions of RANK and c-Fms, or the mRNA expressions of a wide variety of transcription factors and genes important for osteoclast differentiation and activity. CT induced inhibition of tartrate-resistant acid phosphatase (TRAP), positive multinucleated osteoclast formation was not associated with any decrease of total TRAP activity, resulting in a large number of TRAP+ mononucleated cells in CT-treated cultures. CT did not affect the mRNA expression of dendritic cell-specific transmembrane protein, d2 isoform of vacuolar (H+) ATPase vo domain, a disintegrin and metalloproteinase domain 8 (ADAM8), ADAM12, DNAX-activating protein or Fc receptor common γ chain suggested to be involved in fusion of mononucleated osteoclast progenitor cells. The inhibitory effect by CT was mimicked not only by compounds activating cAMP and protein kinase A (PKA) but also by a cAMP analogue activating the exchange protein directly activated by cAMP (Epac) pathway. It is concluded that CT, through cAMP/PKA/Epac cascades, inhibits osteoclast formation and that this effect is not associated with decreased transcription of genes known to be important for osteoclast progenitor cell differentiation, fusion or function.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3