Identification of salsolinol in the mediobasal hypothalamus of lactating ewes and its relation to suckling-induced prolactin and GH release

Author:

Misztal Tomasz,Górski Konrad,Tomaszewska-Zaremba Dorota,Molik Edyta,Romanowicz Katarzyna

Abstract

The push–pull perfusions of the infundibular nucleus–median eminence (IN/ME) were made in lactating ewes (n=7) twice, to identify dopamine (DA)-derived salsolinol and the changes in its extracellular concentration in response to suckling. The perfusate collecting period in every ewe consisted of control non-suckling period, 1000–1230 h (five perfusates), and suckling period, 1230–1500 h (next five perfusates). Simultaneously, blood samples were collected from 1000 to 1500 h at 10-min intervals. The perfusate concentrations of salsolinol and DA were measured by HPLC, and plasma prolactin and GH concentrations were assayed by the RIA. Mean concentrations of salsolinol in perfusates collected from the anterior and posterior parts of the IN/ME (according to post-mortem localization of a perfusion site) increased significantly (P<0.05 and P<0.001 respectively) during the suckling period, when compared with those noted during the non-suckling period. While no DA was found in the anterior part, only vestigial amounts of DA were found in a few perfusates collected from the posterior part. Salsolinol was not detected in the IN/ME of ewes 10 weeks after weaning (seasonal anoestrus). Mean plasma prolactin and GH concentrations during suckling were significantly (P<0.001) higher than those noted during the non-suckling period. In conclusion, our current study reveals that salsolinol is present in the IN/ME of lactating ewes and that its extracellular concentration increases during suckling. Moreover, it supports the role of salsolinol as a neurotransmitter involved in the regulatory process of prolactin secretion at least during lactation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3