Integrative analysis of gene expression patterns predicts specific modulations of defined cell functions by estrogen and tamoxifen in MCF7 breast cancer cells

Author:

Gadal F,Starzec A,Bozic C,Pillot-Brochet C,Malinge S,Ozanne V,Vicenzi J,Buffat L,Perret G,Iris F,Crepin M

Abstract

To explore the mechanisms whereby estrogen and antiestrogen (tamoxifen (TAM)) can regulate breast cancer cell growth, we investigated gene expression changes in MCF7 cells treated with 17β-estradiol (E2) and/or with 4-OH-TAM. The patterns of differential expression were determined by the ValiGen Gene IDentification (VGID) process, a subtractive hybridization approach combined with microarray validation screening. Their possible biologic consequences were evaluated by integrative data analysis. Over 1000 cDNA inserts were isolated and subsequently cloned, sequenced and analyzed against nucleotide and protein databases (NT/NR/EST) with BLAST software. We revealed that E2 induced differential expression of 279 known and 28 unknown sequences, whereas TAM affected the expression of 286 known and 14 unknown sequences. Integrative data analysis singled out a set of 32 differentially expressed genes apparently involved in broad cellular mechanisms. The presence of E2 modulated the expression patterns of 23 genes involved in anchors and junction remodeling; extracellular matrix (ECM) degradation; cell cycle progression, including G1/S check point and S-phase regulation; and synthesis of genotoxic metabolites. In tumor cells, these four mechanisms are associated with the acquisition of a motile and invasive phenotype. TAM partly reversed the E2-induced differential expression patterns and consequently restored most of the biologic functions deregulated by E2, except the mechanisms associated with cell cycle progression. Furthermore, we found that TAM affects the expression of nine additional genes associated with cytoskeletal remodeling, DNA repair, active estrogen receptor formation and growth factor synthesis, and mitogenic pathways. These modulatory effects of E2 and TAM upon the gene expression patterns identified here could explain some of the mechanisms associated with the acquisition of a more aggressive phenotype by breast cancer cells, such as E2-independent growth and TAM resistance.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3