The co-existence of two growth hormone receptors in teleost fish and their differential signal transduction, tissue distribution and hormonal regulation of expression in seabream

Author:

Jiao Baowei,Huang Xigui,Chan Chi Bun,Zhang Li,Wang Deshou,Cheng Christopher H K

Abstract

Two genomic contigs of putative growth hormone receptors (GHRs) were identified in fugu and zebrafish genomes by in silico analysis, suggesting the presence of two GHR subtypes in a single teleost species. We have tested this hypothesis by cloning the full-length cDNA sequence of a second GHR subtype from the black seabream in which the first GHR subtype had been previously reported by us. In addition, we had also cloned the sequences of both GHR subtypes from two other fish species, namely the Southern catfish and the Nile tilapia. Phylogenetic analysis of known GHR sequences from various vertebrates revealed that fish GHRs cluster into two distinct clades, viz. GHR1 and GHR2. One clade (GHR1), containing 6 to 7 extracellular cysteine residues, is structurally more akin to the non-teleost GHRs. The other clade (GHR2), containing only 4 to 5 extracellular cysteine residues, is unique to teleosts and is structurally more divergent from the non-teleost GHRs. In addition, we had examined the biological activities of both GHR subtypes from seabream using a number of reporter transcription assays in cultured eukaryotic cells and demonstrated that both of them were able to activate the Spi 2.1 and β-casein promoters upon receptor stimulation in a ligand specific manner. In contrast, only GHR1 but not GHR2 in seabream could trigger the c-fos promoter activity, indicating that the two GHR subtypes possess some differences in their signal transduction mechanisms. Also, the expression of GHR2 is significantly higher than GHR1 in many tissues of the seabream including the gonad, kidney, muscle, pituitary and spleen. In vivo hormone treatment data indicated that cortisol upregulated hepatic GHR1 expression in seabream but not GHR2, whereas testosterone decreased hepatic GHR2 expression but not GHR1. On the other hand, hepatic expression of both GHR1 and GHR2 in seabream was decreased by estradiol treatment.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3