Decreased expression of retinoid nuclear receptor (RARα and RARγ) mRNA determined by real-time quantitative RT-PCR in peripheral blood mononuclear cells of hypothyroid patients

Author:

Féart C,Vallortigara J,Higueret D,Gatta B,Tabarin A,Enderlin V,Higueret P,Pallet V

Abstract

In vivo assessment of the cellular impact of thyroid hormones on target tissues might be of help for physiological studies and to evaluate the consequences of various diseases of the thyroid gland in humans. Given the tenuous relationship between retinoid and tri-iodothyronine (T3) status and that retinoids have also intracellular roles, the aim of this study was to determine the effect of hypothyroidism on the expression of T3 nuclear receptors (TR) and retinoic acid nuclear receptors (RAR, RXR) in human peripheral blood mononuclear cells (PBMC). Using real time RT-PCR, we quantified the relative amount of mRNA of the thyroid (TRα and TRβ) and retinoid (RARα, RARγ, and RXRα) nuclear receptors in PBMC of euthyroid (n=22) compared with hypothyroid (n=22) subjects. Classical plasma parameters (free T3 (FT3), free thyroxine (T4) (FT4), thyroid-stimulating hormone (TSH), retinol (ROH), retinol-binding protein (RBP) and transthyretin (TTR)) were also measured. In hypothyroid subjects, the concentration of TSH was elevated, and dramatically low T3 and T4 concentrations were associated with a decrease in the expression of TRβ. Expression of RARα and RARγ significantly decreased in hypothyroid versus control subjects, while an increased concentration of ROH was emphasised by hypothyroidism. These results first indicated that primary hypothyroidism induces hypoactivation of the retinoid nuclear pathway in PBMC, which was not predicted by the plasma ROH level. Further investigations will be necessary to evaluate these parameters in very small changes in thyroid hormone production such as mild (subclinical) hypothyroidism.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3