Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors α and β by coactivators and corepressors

Author:

Klinge C M,Jernigan S C,Mattingly K A,Risinger K E,Zhang J

Abstract

One mechanism by which ligand-activated estrogen receptors α and β (ERα and ERβ) stimulate gene transcription is through direct ER interaction with specific DNA sequences, estrogen response elements (EREs). ERE-bound ER recruits coactivators that stimulate gene transcription. Binding of ER to natural and synthetic EREs with different nucleotide sequences alters ER binding affinity, conformation, and transcriptional activity, indicating that the ERE sequence is an allosteric effector of ER action. Here we tested the hypothesis that alterations in ER conformation induced by binding to different ERE sequences modulates ER interaction with coactivators and corepressors. CHO-K1 cells transfected with ERα or ERβ show ERE sequence-dependent differences in the functional interaction of ERα and ERβ with coactivators steroid receptor coativator 1 (SRC-1), SRC-2 (glucocorticoid receptor interacting protein 1 (GRIP1)), SRC-3 amplified in breast cancer 1 (AIB1) and ACTR, cyclic AMP binding protein (CBP), and steroid receptor RNA activator (SRA), corepressors nuclear receptor co-repressor (NCoR) and silencing mediator for retinoid and thyroid hormone recpetors (SMRT), and secondary coactivators coactivator associated arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 1 (PRMT1). We note both ligand-independent as well estradiol- and 4-hydroxytamoxifen-dependent differences in ER-coregulator activity. In vitro ER-ERE binding assays using receptor interaction domains of these coregulators failed to recapitulate the cell-based results, substantiating the importance of the full-length proteins in regulating ER activity. These data demonstrated that the ERE sequence impacts estradiol-and 4-hydroxytamoxifen-occupied ERα and ERβ interaction with coregulators as measured by transcriptional activity in mammalian cells.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3