Response of the 5′-flanking region of the human 25-hydroxyvitamin D 1α-hydroxylase gene to physiological stimuli using a transgenic mouse model

Author:

Hendrix I,Anderson P H,Omdahl J L,May B K,Morris H A

Abstract

The enzyme 25-hydroxyvitamin D 1α-hydroxylase, or CYP27B1, is the key enzyme in the two-step activation process of vitamin D to 1,25-dihydroxyvitamin D (1,25D). While a number of regulators of the renal CYP27B1 enzyme activity have been recognized for some years, their underlying molecular mechanisms remain largely unknown, and the DNA regions involved in the in vivo regulation of gene expression by these factors have not been delineated. We have generated a transgenic mouse line that expresses 1501 bp of 5′ flanking region together with 44 bp of 5′ untranslated region of the human CYP27B1 gene fused to the firefly luciferase reporter gene. Animals expressing the luciferase gene demonstrated that both luciferase protein and mRNA for CYP27B1 were localized to proximal convoluted tubule cells of the kidney. In 2-week-old animals, the expression of the transgene and the endogenous CYP27B1 mRNA levels in the kidney were highest and fell with increasing age. Both reporter gene expression and CYP27B1 mRNA levels were downregulated in response to increasing amounts of dietary calcium in a dose-dependent manner. Vitamin D deficiency resulted in an increase in both the reporter gene and CYP27B1 expression. Interestingly, the increase in CYP27B1 mRNA levels was substantially higher than the increase in reporter gene expression, suggesting either that there is a post-transcriptional mechanism that increases the amount of CYP27B1 mRNA or that other regulatory elements are required to maximize the effect of vitamin D deficiency. These findings demonstrate that the 1501 bp 5′ flanking region of the CYP27B1 gene directs expression to the proximal convoluted tubules of the kidney and is responsible for increasing transcriptional activity when dietary calcium and vitamin D levels are depleted. It also responds in the kidney to the physiological regulators of development and ageing.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3