Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis

Author:

Nogueira Edson F,Xing Yewei,Morris Claudia A V,Rainey William E

Abstract

Aldosterone is principally synthesized in the zona glomerulosa of the adrenal by a series of enzymatic reactions leading to the conversion of cholesterol to aldosterone. Angiotensin II (Ang II) is the major physiological regulator of aldosterone production acting acutely to stimulate aldosterone biosynthesis and chronically to increase the capacity of the adrenals to produce aldosterone. We previously defined eight transcription factors that are rapidly induced following Ang II treatment using three in vitro adrenocortical cell models. Herein, we investigated the function of these transcription factors in the regulation of the enzymes needed for aldosterone production. H295R adrenal cells were co-transfected with expression vectors for each transcription factor and promoter/reporter constructs prepared for genes encoding the enzymes needed for aldosterone production. NGFI-B family members induced promoter activity of 3-beta-hydroxysteroid-dehydrogenase type 2 (HSD3B2), 21-hydroxylase (CYP21A2), and aldosterone synthase (CYP11B2). The importance of NGFI-B in the regulation of CYP11B2 was also demonstrated by reduced CYP11B2 transcription in the presence of a dominant-negative-NGFI-B. A pharmacological approach was used to characterize the Ang II pathways regulating transcription of NGFI-B family genes. Transcription of NGFI-B members were decreased following inhibition of Ang II type 1 receptor (AT1R), protein kinase C (PKC), calcium/calmodulin-dependent kinases (CaMK), and Src tyrosine kinase (SRC). Taken together, these results suggest that Ang II binding to the AT1R increases activity of PKC, CaMK, and SRC, which act to increase expression of the family of NGFI-B genes as well as CYP11B2. Ang II induction of the NGFI-B family members represents an important pathway to increase the capacity of adrenal cells to produce aldosterone.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3