ACTIVATION OF SOLUBILIZED STEROID-TRANSFORMING ENZYMES OF ADRENAL MICROSOMAL ORIGIN BY SERUM PROTEINS

Author:

HAMILTON MARGOT A.,McCUNE R. W.,ROBERTS SIDNEY

Abstract

SUMMARY The reactions which result in the conversion of pregnenolone to progesterone and of progesterone to deoxycorticosterone in undisrupted microsomal preparations from rat adrenal glands were stimulated by homologous serum. The active materials were shown to be firmly associated with serum proteins. The dialysable fraction of serum was either without effect on these transformations or was inhibitory. The enzyme systems involved were partially solubilized by exposure of the microsomal preparation to prolonged sonic treatment or to 1% Triton N-101. After either treatment, 35–40% of the original specific activity of the steroid 21-hydroxylase system responsible for the conversion of progesterone to deoxycorticosterone was found in the supernatant fraction after high-speed centrifugation. However, this solubilized system did not respond to serum preparations. The same procedures also resulted in a supernatant fluid which showed about 50–60% of the initial specific activity of the multi-enzyme system involved in the conversion of pregnenolone to progesterone. In these instances, the stimulatory effect of serum was retained or accentuated. Acetone powders prepared from the adrenal microsomal fraction were also active in the conversion of pregnenolone to progesterone and responded to serum with enhanced activity. Earlier observations that activation of steroid 21-hydroxylase by homologous rat serum was specific for the β-globulin fraction were confirmed in the present investigations. In contrast, stimulation of the conversion of pregnenolone to progesterone was apparently due principally to the albumin fraction. Albumin preparations from a number of other sources, as well as whole human serum protein, were also effective in this regard. The active protein preparations selectively stimulated 4-ene-3β-hydroxysteroid dehydrogenase activity, but did not activate 5-ene-3-oxosteroid isomerase in the microsomal fraction. This finding suggested that activation of 5-ene-3β-hydroxysteroid dehydrogenase was responsible for stimulation of progesterone synthesis from pregnenolone. The results indicate that the protein-bound factor in rat serum which was capable of stimulating the conversion of progesterone to deoxycorticosterone in microsomal preparations from rat adrenal glands was different from that which activates the conversion of pregnenolone to progesterone. Moreover, these diverse factors appeared to act by different mechanisms.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3