UPTAKE IN VITRO OF [3H]OXYTOCIN BY THE MAMMARY GLAND AND OTHER TISSUES OF THE RAT

Author:

EGAN SANDRA M.,LIVINGSTON A.

Abstract

SUMMARY In the presence of 62 μu. or more of [3H]oxytocin/ml there was specific uptake of oxytocin by lactating rat mammary glands in vitro within 400 s under conditions similar to those used in the biossay of oxytocin with rat mammary strips in vitro. This uptake was blocked by pre-incubation with non-radioactive oxytocin. A similar, rapid, specific uptake of oxytocin by uterine tissue in vitro was observed. There was no specific uptake of oxytocin by non-target tissues such as heart and skeletal muscle. Measurements of inulin and water spaces of the tissues showed that, over these short periods of time, diffusion into mammary tissue was much less than into the other tissues. The ratios of uptake of [3H]oxytocin: [3H]inulin and [3H]oxytocin: [3H]water were much higher for mammary tissue than those for other tissues used, indicating a preferential (tissue-specific) uptake. Uterine tissue from stilboestrol-primed rats also showed a preferential uptake of oxytocin, though not as great as that for mammary tissue. It is suggested that the specific uptake of oxytocin by mammary and uterine tissue is due to binding to specific receptors. There was a variation in the specific uptake of oxytocin with the day of lactation of the mammary tissue, and specific uptake was only observed after the 8th day. This could indicate synthesis of receptors during lactation. In a similar way, synthesis of receptors may occur in the non-pregnant uterus due to the influence of exogenous oestrogens, leading to the increase in specific uptake by non-pregnant uterine tissue for oestrogen-primed rats. There is some evidence of more than one type of binding site for oxytocin. Biological action may only be associated with one of these sites.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3