Functional characterization of human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity

Author:

Agarwal Anil K,Sukumaran Suja,Bartz Rene,Barnes Robert I,Garg Abhimanyu

Abstract

Most cells synthesize their glycerophospholipids and triglycerides (TG) to maintain the cellular integrity and to provide energy for cellular functions. The phospholipids are synthesized de novo in cells through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. Several isoforms of the enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (AGPAT) acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. We cloned a cDNA predicted to be an AGPAT isoform and designated it AGPAT9. The human AGPAT9 gene spans across 14 exons and encodes for a polypeptide of 534 amino acids. AGPAT9 is highly expressed in the lung and spleen, followed by leukocyte, omental adipose tissue, and placenta. In the Chinese Hamster Ovary (CHO), cell lysates overexpressing AGPAT9, we observed AGPAT activity but not the lysophosphatidylcholine acyltransferase activity. When AGPAT9 is coexpressed with AGPAT1 in CHO cells, both the isoforms localize to the endoplasmic reticulum (ER) and occupy the same ER domain as AGPAT1. Despite substitution of asparagine with proline in the NHX4D motif and arginine with cysteine in the EGTR motif, AGPAT9 retains AGPAT activity suggesting that residues asparagine and arginine in the NHX4D and EGTR motifs respectively are not essential for the enzymatic activity. Based on the X-ray crystallographic structure of a related acyltransferase, squash gpat, a model is proposed in which a hydrophobic pocket in AGPAT9 accommodates fatty acyl chains of both substrates in an orientation, whereas the HX4D motif participates in catalysis. Based on the activity and expression pattern of AGPAT9 in the lung and spleen, this novel isoform could be implicated in the biosynthesis of phospholipids and TG in these tissues.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3