Recurrence of the p.R277X/p.R1511X compound heterozygous mutation in the thyroglobulin gene in unrelated families with congenital goiter and hypothyroidism: haplotype analysis using intragenic thyroglobulin polymorphisms

Author:

Caputo Mariela,Rivolta Carina M,Gutnisky Viviana J,Gruñeiro-Papendieck Laura,Chiesa Ana,Medeiros-Neto Geraldo,González-Sarmiento Rogelio,Targovnik Héctor M

Abstract

Thyroglobulin (TG) functions as the matrix for thyroid hormone synthesis. Thirty-five different loss-of-function mutations in the TG gene have been reported. These mutations are transmitted in an autosomal recessive mode. The objective of this study is to analyze the recurrence of the p.R277X/p.R1511X compound heterozygous mutation in the TG gene in two unrelated families (one Argentinian and another Brazilian) with congenital hypothyroidism, goiter and impairment of TG synthesis. The first and last exon of the TG gene, the exons where previously mutations and single nucleotide polymorphisms (SNPs) were detected, as well as the TG promoter, were analyzed by automatic sequencing in one affected member of the each family. Four microsatellite markers localized in introns 10, 27, 29 and 30 of the TG gene, one insertion/deletion intragenic polymorphism and 15 exonic SNPs were used for haplotype analysis. A p.R277X/p.R1511 compound heterozygous mutation in the TG gene was found in two members of an Argentinian family. The same mutations had been also reported previously in two members of a Brazilian family. We constructed mutation-associated haplotypes by genotyping members of the two families. Our results suggest that the cosegregating haplotype is different in each one of these families. Different haplotypes segregated with the p.R277X and p.R1511 mutations demonstrating the absence of a founder effect for these mutations between Argentinian and Brazilian populations. However, haplotyping of Argentinian patients showed the possibility that the p.R277X alleles might be derived from a common ancestral chromosome.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3