Endothelin-2 induces oviductal contraction via endothelin receptor subtype A in rats

Author:

Al-Alem Linah,Bridges Phillip J,Su Wen,Gong Ming C,Iglarz Marc,Ko CheMyong

Abstract

Proper function of the oviduct is critical to reproductive success with regulated contraction and relaxation facilitating transportation of the germ cells to the site of fertilization. Endothelin-2 (EDN2) is a potent vasoconstrictor produced by granulosa cells of the preovulatory follicle at the time of ovulation; however, whether this gonadotropin surge-induced peptide played a role in facilitating germ cell transportation by inducing oviductal contraction was unknown. The objectives of these experiments were (1) to determine whether the endothelin receptor system was present in the oviduct, (2) to test the hypothesis that EDN2 induces oviductal contraction via a specific endothelin receptor subtype, (3) to determine, as a possible alternate source of the ligand, whether mRNA for EDN2 was expressed in cumulus–oocyte complexes (COCs) within the oviduct, and (4) to determine whether EDN2 could overcome prostaglandin E2 (PGE2)-induced oviductal relaxation. Microarray and real-time PCR analysis indicated that mRNA for both the endothelin receptor subtypes (ETA and ETB) was present in the oviduct, whereas immunohistochemical examination revealed that ETA protein was the dominant isoform, present in the luminal epithelial cells of the oviduct. Real-time PCR analysis demonstrated that mRNA for EDN2 was expressed in COCs after ovulation. Isometric tension analysis indicated that EDN2 was a potent oviductal constrictor and that the contractile effect of EDN2 was mediated by the ETA and not the ETB receptor subtype. The oviductal contraction induced by EDN2 also reversed oviductal relaxation induced by PGE2. In summary, ETA receptor-specific EDN2-induced contraction as a facilitator of oviductal function suggests a novel pathway involved in germ cell transport and hence mammalian fertility.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3