Expression of extracellular matrix proteins and integrins in rat adrenal gland: importance for ACTH-associated functions

Author:

Otis Mélissa,Campbell Shirley,Payet Marcel D,Gallo-Payet Nicole

Abstract

The expression of main extracellular matrix (ECM) and their integrins were studied in the adult rat adrenal gland. Collagen I, IV (CI, CIV), laminin (LN) and fibronectin (FN) expression was observed surrounding each glomerulosa cell and as long fibrils between the cords of fasciculata cells. In the medulla, FN was present around chromaffin cells or bordering blood vessels. Integrin α2, α3 and α5 were present mainly in the cortex, while α1 was present in the medulla. In culture, all ECM favoured proliferation of both glomerulosa and fasciculata cells, while protein synthesis was lower on FN and LN in glomerulosa cells. CIV promoted ACTH-induced proliferation whereas FN favoured ACTH-induced protein synthesis in glomerulosa cells. Except for LN, ECM increased expression of 3β-hydroxysteroid dehydrogenase and enhanced basal aldosterone, although corticosterone secretion was only enhanced by CI and CIV. In fasciculata cells, the potency of ACTH-induced cAMP production was lower on ECM, compared with plastic. Moreover, ACTH, but not ECM, activated mitogenic-activated protein kinase p38 and stress-activated protein kinases. Glomerulosa and fasciculata cells grown on CI and CIV had a polygonal morphology, while cells grown on LN appeared as clusters of small rounded cells. On FN, the glomerulosa cells exhibited polygonal morphology while fasciculata cells appeared as clusters of small rounded cells. Together, these results indicate that ECM modulates basal and ACTH-induced cell functions, with FN, CI and CIV specifically favouring steroid secretion, as opposed to LN which inhibits secretion while promoting proliferation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3