Contribution of type II phospholipase A2 to in vitro phospholipase A2 enzymatic activity in human term placenta

Author:

Rice GE,Wong MH,Farrugia W,Scott KF

Abstract

Although phospholipase A2 (PLA2) enzymatic activities have been implicated in the regulation of phospholipid metabolism and eicosanoid formation in human gestational tissues, the role and contribution made by individual PLA2 isozymes has not been established. The aim of this study, therefore, was to determine the contribution made by Type II PLA2 to PLA2 enzymatic activity present in human term placenta. The experimental paradigm used to establish the contribution made by Type II PLA2 to total in vitro PLA2 enzymatic activity present in placental extracts was to remove Type II PLA2 by immunoaffinity extraction and then to quantify residual PLA2 enzymatic activity. Before immunoaffinity extraction, Type II PLA2 immunoactivity and total PLA2 enzymatic activity present in placental extracts averaged 28.0 +/- 10.0 ng/mg protein and 1040 +/- 367 pmol/h per mg protein (n = 3) respectively. After solid-phase immunoaffinity batch extraction of placental extracts, immunoreactive Type II PLA2 was not detectable by ELISA, and PLA2 enzymatic activity was decreased by 82 +/- 1% (P < 0.001). Residual (i.e. non-Type II) PLA2 enzymatic activity was further characterised by Western blot analysis and enzyme activity assay. The data obtained are consistent with a contribution by both cytosolic PLA2 and other secretory PLA2 isozymes (i.e. non-Type II) to residual PLA2 enzymatic activity. The results obtained in this study support the conclusion that Type II PLA2 is quantitatively the primary PLA2 isozyme that contributes to in vitro PLA2 enzymatic activity present in extracts of human term placenta, accounting for at least 80% of total activity. These data further support the involvement of this extracellularly active isozyme in the regulation of placental phospholipid metabolism and eicosanoid formation during late gestation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3