A type I collagen substrate increases PTH/PTHrP receptor mRNA expression and suppresses PTHrP mRNA expression in UMR106–06 osteoblast-like cells

Author:

Celic S,Chilco P J,Zajac J D,Martin T J,Findlay D M

Abstract

Abstract We have previously shown that the response of osteoblasts to parathyroid hormone (PTH) can be influenced at the receptor level by growth on the physiological substrate, type I collagen, or by treatment with retinoic acid. We have also shown differential expression of genes when cells of the osteoblast lineage are grown on type I collagen. The aim of this study was therefore to examine the effect of retinoic acid and growth on type I collagen on PTH/PTH-related protein (PTHrP) receptor mRNA expression in the osteosarcoma osteoblast-like cell line UMR106–06. PTH/PTHrP receptor mRNA levels, as assessed by Northern blot, of cells grown on collagen were increased up to 2-fold compared with cells on plastic and in a concentration-dependent manner with respect to collagen. An increase was seen as early as 6 h and was maintained over a 24 h period. This was not due to increased mRNA stability. Retinoic acid decreased the level of receptor mRNA on both plastic and collagen at each time but did not alter mRNA stability. For all treatments PTH/PTHrP receptor mRNA abundance, relative to glyceraldehyde-3-phosphate dehydrogenase, increased steadily over 24 h after subculture of cells. In contrast, PTHrP mRNA levels were reduced in cells on collagen, compared with plastic. PTH-stimulated cAMP levels of cells grown on collagen were increased compared with plastic at 24 h, but not earlier. Consistent with the mRNA data, retinoic acid decreased the amplitude of cAMP responses in cells on plastic and collagen. There was no evidence for changes in adenylate cyclase per se, since forskolin-induced cAMP levels did not change with either treatment. This study shows that known modulators of osteoblast maturation also affect signal transduction in these cells by regulating gene expression of the PTH/PTHrP receptor as well as the PTHrP ligand. Journal of Endocrinology (1996) 150, 299–308

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3