Author:
Divino Filho JC,Hazel SJ,Furst P,Bergstrom J,Hall K
Abstract
Elevated insulin-like growth factor binding protein (IGFBP) levels, including IGFBP-1, occur in renal failure, and may contribute towards reduced IGF bioactivity in uraemia. The reduced IGF bioactivity may, in turn, contribute towards the disturbances in protein metabolism present in renal failure. In this study, the relationships between intra- and extracellular amino acid (AA) levels and IGF-I and/or IGFBP-1 levels were studied in 30 adult patients (aged 24-70 years) on haemodialysis who had no clinical signs of malnutrition. Blood samples (n = 30) and muscle biopsies (n = 13) were collected for determination of free AA in erythrocytes (RBC), plasma and muscle by reverse-phase HPLC while IGFBP-1, IGF-I and insulin plasma levels were determined by radioimmunoassay The patients on haemodialysis had elevated glutamate concentrations in RBC and plasma compared with healthy controls (524 +/- 26 vs 448 +/- 17 mumol/l, P < 0.05 and 45 +/- 4 vs 32 +/- 4 mumol/l, P < 0.01 respectively), although glutamate levels in muscle were within the normal range. The mean IGF-I level was slightly increased (s.d. score +0.74 +/- 0.30) but insulin levels were within the normal range. IGFBP-1 levels, which were inversely correlated to insulin (r = -0.40, P < 0.02), were elevated threefold compared with controls. No plasma AA level displayed a significant correlation with IGF-I, IGFBP-1 or insulin levels. However, glutamate concentrations in RBC were positively correlated to IGFBP-1 (r = 0.51, P < 0.01) and inversely correlated to IGF-I (r = -0.46. P < 0.01), although unrelated to insulin. Muscle glutamate, which was inversely related to RBC glutamate, displayed an opposite pattern with an inverse relation to IGFBP-1 levels (r = - 0.73, P < 0.01) and a positive correlation to IGF-I levels (r = 0.64, P < 0.02). Glutamate was the only AA to display an inverse correlation between RBC and muscle (r = -0.65, P < 0.02, n = 12). These findings lead us to propose that, in uraemia, the elevated IGFBP-I levels, which reduce the bioavailability of IGFs, are linked to glutamate uptake in muscle, resulting in accumulation of RBC glutamate. Whether there is a causal relationship or the correlation is due to some common regulator is not clarified in the present study.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献