Identification of genes expressed in the rat prostate that are modulated differently by castration and Finasteride treatment

Author:

Avila DM,Fuqua SA,George FW,McPhaul MJ

Abstract

In mammals, testosterone and 5alpha-dihydrotestosterone (DHT) are the principal male hormones (androgens). Testosterone is the most abundant circulating androgen, and is converted in specific tissues to DHT by the 5alpha-reductase enzymes. Although each of these androgens binds to the same receptor protein (androgen receptor, AR), each exerts biologically distinct effects. Theories to explain the specific effects of testosterone and DHT have centered on kinetic differences of binding of androgens to the receptor or differences in the metabolic fates of the two hormones. In the current experiments, differential display PCR (ddPCR) was used to identify genes regulated differently by testosterone and DHT. Adult male rats were treated as follows: castrated, treated with Finasteride (an inhibitor of 5alpha-reductase) or left intact for ten days. RNA was prepared from the dissected prostates of these animals and used for ddPCR. Genes exhibiting four distinct patterns of regulation were observed among the mRNAs. Class 1 genes showed equivalent expression in intact and Finasteride-treated animals, but were absent in castrated animals (mRNAs D1, D2, D6, D10). Class 2 genes showed higher expression in intact animals, intermediate levels following Finasteride treatment, but were absent in castrated animals (mRNA D8). Two classes of gene were particularly intriguing: class 3 showed gene expression only in the intact animal (mRNA D7, D9) and class 4 showed increased gene expression following Finasteride treatment (mRNA D3). While the patterns observed for some of these genes (e.g. D8) suggest that the different biological effects of testosterone and DHT may be due to the lower affinity of the AR for testosterone and limiting tissue concentrations of androgen, our results also suggest that some genes expressed in the rat prostate may be regulated in fundamentally different ways in response to testosterone and DHT.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3