Differential adrenergic regulation of rat pineal cyclic AMP production and N-acetyltransferase activity during postnatal development: involvement of G alpha s and G alpha i1-2 proteins

Author:

Harmouch A,Guerrero JM,Pozo D,Rafii-el-Idrissi M,Reiter RJ,Osuna C,

Abstract

We have studied why rat pineal N-acetyltransferase (NAT) activity is relatively insensitive to isoproterenol in young rats when compared with adult rats. We report that activation by isoproterenol of pineal cyclic AMP production and NAT activity is higher in adult than in 2-week-old rats. However, the effect of dibutyryl cyclic AMP, which enters the pinealocyte and duplicates the effect of cyclic AMP, on NAT activity was similar at both ages. Moreover, we found that both alpha- and beta-adrenergic receptors are highly specific at both ages, since the binding of the specific radioligands used to their receptors could be displaced only by their corresponding agonists and antagonists. However, we observed differences between pineals from young and adult rats when several families of the alpha subunit of G-proteins were studied in cell membranes. ADP-ribosylation and immunoblot studies have shown clear differences in both 42 and 45 kDa forms of the Gs alpha Both forms exhibit low values in pineals from 2-week-old animals when compared with 6-week-old. We also show that the later appearance of both Gs alpha forms is roughly similar to the potent activation of cyclic AMP production and NAT activity in adult rats when compared with young rats. In conclusion, the results presented suggest that the relative lack of sensitivity of rat pineal gland to beta-adrenergic receptor agonists early in the postnatal development may be explained by the low levels of membrane Gs alpha, rather than postreceptor-mediated mechanisms or changes in the characteristics of the beta-adrenergic receptors on the pinealocyte membrane.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3