Author:
Calogero AE,Burrello N,Ossino AM,Polosa P,D'Agata R
Abstract
The presence of activins in those hypothalamic regions containing gonadotropin-releasing hormone (GnRH)-secreting neurons suggests that these peptides may regulate the reproductive function modulating not only pituitary FSH release and biosynthesis, but also hypothalamic GnRH release. The purpose of this study was to evaluate the effects of activin-A, a homodimer of inhibin beta A subunit, on hypothalamic GnRH release in vitro and, because of their well known antithetical effects, to evaluate its interaction with inhibin. In addition, since androgens modulate the release of GnRH from male rat hypothalami, we thought it of interest to study the possible interplay between these steroids and activin on GnRH release. To accomplish this, we employed a hypothalamic organ culture system which enabled us to evaluate GnRH release from individually incubated hemi-hypothalami explanted from male rats. Activin-A stimulated GnRH release in a biphasic manner. The maximal effect was reached at a concentration of 10 ng/ml which increased GnRH output by about 75%. Inhibin abolished the stimulatory effect of a maximally effective concentration of activin-A in a dose-dependent manner, whereas alone it had no effect on GnRH output. As previously shown, testosterone (1 nmol/l) and dihydrotestosterone (DHT, 0.1 nmol/l) suppressed basal GnRH release, but only testosterone was able to inhibit the release of GnRH stimulated by activin-A. Since DHT is a non-aromatizable androgen, we evaluated whether the inhibitory effect of testosterone was due to its in vitro conversion into 17 beta-estradiol. The addition of 4-hydroxyandrostenedione, a steroidal aromatase inhibitor, did not influence the suppressive effect of testosterone on GnRH release stimulated by activin-A. In conclusion, activin-A stimulated hypothalamic GnRH release in vitro and this effect was abolished by inhibin and was blunted by testosterone. These findings suggest that activins may participate in the regulation of the hypothalamic-pituitary-gonadal axis by modulating GnRH release. The ability of testosterone to suppress the release of GnRH stimulated by activin-A indicates that this steroid has a potent negative feedback influence on GnRH release.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献