Autoregulation of central and peripheral growth hormone receptor mRNA in domestic fowl

Author:

Hull KL,Harvey S

Abstract

Growth hormone (GH) regulates numerous cellular functions in many different tissues. A common receptor is believed to mediate these tissue-specific effects, suggesting that post-receptor signalling molecules or tissue sensitivity to GH may differ between tissues. Tissue sensitivity depends upon the abundance of GH receptors (GHRs), thus tissue-specific GHR regulation could enable tissue-specific GH actions. The comparative autoregulation of GHR gene transcription in central (whole brain or hypothalami) and peripheral (liver, bursa, spleen and thymus) tissues was therefore examined in domestic fowl. In all tissues, a 4.4 kb GHR gene transcript that encodes the full-length GHR was identified. The abundance of this transcript was inversely related to endogenous GH status; it was lower in males with high circulating concentrations of GH and higher in females with lower basal concentrations of plasma GH. The abundance of this transcript was also rapidly downregulated in response to a bolus systemic injection of recombinant chicken GH, designed to mimic an episodic burst of endogenous GH release. This autoregulatory response was observed within 2 h of GH administration and was of greater magnitude in the brain than in peripheral tissues. Intracerebroventricular injections of GH also downregulated GHR gene expression in the brain, although hepatic GHR transcripts were unaffected 24 h after central administration of GH. In contrast, the induction of hyposomatotropism by passive GH immunoneutralization increased the abundance of the GHR transcript in the thymus, but not in other central (brain) or peripheral (bursa, liver) tissues. GH is not the sole regulator of GHR abundance, however; hypersomatropism induced by hypothyroidism was associated with an increase in GHR mRNA. The expression of the GHR gene in the domestic fowl would thus appear to be autoregulated by GH in a tissue-specific way.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3