Introducing a point mutation identified in a patient with pituitary resistance to thyroid hormone (Arg 338 to Trp) into other mutant thyroid hormone receptors weakens their dominant negative activities

Author:

Ando S,Nakamura H,Sasaki S,Nishiyama K,Kitahara A,Nagasawa S,Mikami T,Natsume H,Genma R,Yoshimi T

Abstract

Abstract Clinical resistance to thyroid hormone (RTH) has been classified into generalized resistance to thyroid hormone (GRTH) and pituitary resistance to thyroid hormone (PRTH) types. Since similar mutations have been identified in tri-iodothyronine (T3) receptor (TR) β gene in GRTH and PRTH, and since considerable overlap has been seen in the clinical manifestations in patients with GRTH and PRTH, two subtypes of RTH are now considered to be a continuous spectrum with the same genetic defect. A point mutation at amino acid Arg 338 to Trp (R338W) which we identified in a patient with PRTH is very interesting, since R338W has been found in several other patients with PRTH, raising the possibility that this mutation may tend to associate with a phenotype of PRTH. In our previous study, we found that R338W had relatively less impaired transcriptional potency, weaker dominant negative activity on various T3 response elements and poor homodimer formation, as compared with another GRTH mutant. In this study, to investigate the functional properties of R338W further, especially in terms of the relation between transcriptional activity and dimer formations, we introduced the R338W mutation into the mutant receptors, K443E and F451X, constructing the double mutants, R338W/K443E and R338W/F451X. Both R338W/K443E and R338W/F451X showed negligible T3 binding and transcriptional activities. The dominant negative activities of K443E and F451X were, however, significantly weakened by introducing the R338W mutation. As a control, a double mutant G345R/K443E was constructed by introducing a point mutation, G345R, located in the same exon 9 as R338W, into the K443E mutant. Dominant negative activity did not differ between G345R/K443E and K443E. Homodimer formation was significantly reduced in the double mutants containing R338W, but not G345R. In summary, introducing the R338W mutation, but not G345R, into the mutant TR significantly weakened the dominant negative activity, despite further impairment of the T3 binding and transcriptional activities. Journal of Endocrinology (1996) 151, 293–300

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3