Stage-related differences in rat seminiferous tubule contractility in vitro and their response to oxytocin

Author:

Harris GC,Nicholson HD

Abstract

Oxytocin (OT) is present in the mammalian testis and has been shown to play a role in the modulation of seminiferous tubule contractility and steroidogenesis. However, stage-specific effects of the peptide have not been previously investigated. In this study, computer-assisted analysis and time-lapse videomicrography were used to investigate basal contractility and the response to OT of seminiferous tubules at specific stages of the spermatogenic cycle. Adult rat testes were placed in fresh oxygenated DMEM F12 medium, decapsulated, and the tubules gently teased apart. Stages were identified by transillumination and a 10 mm section of tubule at each of stages IV-V, VII-VIII and XIII-I was placed in a microslide chamber and perifused with medium. After a control period of 3 h, OT (2 nM) was given for 1 h, followed by another control period of 1 h. The experiment was repeated using tubules from different rats and data were analysed to give arbitrary units of tubule contractility. Contractility was observed in all the tubules studied and the contractile activity was shown to vary depending on the stage of the spermatogenic cycle. Mean basal contractility at stages VII-VIII, the time when sperm are shed from the epithelium, was significantly lower than that at stages IV-V and XIII-I. The response of the tubules to OT was also stage-dependent, with the peptide producing the largest increases in contractile activity at stages VII-VIII and having no effect at stages IV-V. We postulate that these stage-specific differences in basal and OT-stimulated contractility may be important in co-ordinating the movement of developing germ cells towards the lumen of the seminiferous epithelium and in the process of spermiation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3