Plasma nitrate+nitrite levels are regulated by ovarian steroids but do not correlate with trabecular bone mineral density in rats

Author:

van Bezooijen RL,Que I,Ederveen AG,Kloosterboer HJ,Papapoulos SE,Lowik CW

Abstract

Nitric oxide (NO) is a mediator of bone metabolism and its production is under the control of gender hormones in several cell types or tissues. Changes in endogenous NO production, measured as plasma nitrate+nitrite levels, may therefore contribute to ovariectomy (OVX)-induced bone loss. We studied plasma nitrate+nitrite levels and trabecular bone mineral density (TBMD) 4 weeks after sham-operation or OVX in rats receiving various hormonal treatments. OVX decreased plasma nitrate+nitrite levels significantly and this was accompanied by a significant decrease in TBMD. Treatment with oral ethinyl oestradiol (EE) and subcutaneous 17beta-oestradiol dose-dependently prevented the decrease in plasma nitrate+nitrite levels after OVX, but treatment with oral 17beta-oestradiol did not. Oestrogen treatment, 17beta-oestradiol (s. c. or orally) or EE (orally), prevented the OVX-induced decrease in TBMD. Treatment of sham-operated rats with the anti-oestrogen ICI164, 384 induced a significant decrease in TBMD that corresponded to 54% of the decrease observed after OVX, but did not affect plasma nitrate+nitrite levels. Treatment of ovariectomized rats with Org 2058, a pure progestagen, did not prevent bone loss, but prevented the decrease in plasma nitrate+nitrite levels dose-dependently. Treatment with tibolone, a synthetic steroid with combined weak oestrogenic, progestagenic, and androgenic properties, or with progestagen in combination with EE completely prevented bone loss after OVX. These treatments, however, only partly prevented the OVX-induced decrease in plasma nitrate+nitrite levels. In conclusion, OVX decreased both TBMD and plasma nitrate+nitrite levels. Although plasma nitrate+nitrite levels were under the control of both oestrogen and progesterone, TBMD was affected by oestrogen only. Decreased systemic production of NO is, therefore, not involved in OVX-induced bone loss in rats.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3