Cellular localization of sphingomyelin synthase 2 in the seminiferous epithelium of adult rat testes

Author:

Lee Nikki P Y,Mruk Dolores D,Xia Weiliang,Cheng C Yan

Abstract

Sphingomyelin synthase 2 (SMS2) is an enzyme that catalyzes the conversion of phosphatidylcholine and ceramide to sphingomyelin and diacylglycerol, and it is crucial to cellular lipid metabolism. Using the technique of subtraction hybridization, we have isolated a full-length cDNA encoding SMS2 from rat testes, which shared 93 and 87% identity at the nucleotide level with SMS2 in mice and humans respectively. A specific polyclonal antibody was prepared against a 20 amino acid peptide of NH2-FSWPLSWPPGCFKSSCKKYS-COOH near the C-terminus of SMS2. Studies by RT-PCR and immunoblotting have shown that the expression of SMS2 was limited to late round spermatids and elongating spermatids, but it was not detected in late elongate spermatids and Sertoli cells. Furthermore, SMS2 was shown to associate with the developing acrosome beginning in late round spermatid through elongating spermatids (but not late elongate spermatids) and the cell membrane in studies using fluorescent microscopy and immunohistochemistry. These data were further confirmed by studies using immunogold electron microscopy. The expression of SMS2 in the seminiferous epithelium is stage-specific with its highest expression detected in the acrosome region in late round spermatids from stages VIII–IX, and also in the acrosome in elongating spermatids with diminished intensity in stages X–V; however, it was not found in the acrosome in elongate spermatids in stages VI–VIII. Collectively, these results suggest that SMS2 may play a crucial role in the lipid metabolism in acrosome formation and the plasma membrane restructuring from late round spermatids to early elongating spermatids.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3