An association between a BclI restriction fragment length polymorphism of the glucocorticoid receptor locus and hyperinsulinaemia in obese women

Author:

Weaver J. U.,Hitman G. A.,Kopelman P. G.

Abstract

ABSTRACT Obesity is likely to be a multifactorial disease with an important genetic component. Animal models of genetic and experimentally induced obesity suggest that glucocorticoid receptor (GR) activity plays a role in the aetiology and maintenance of the obese state. Glucocorticoid activity appears to be essential for the development of hyperinsulinaemia and subsequent fat deposition. In humans, glucocorticoid excess is associated with central fat distribution. We have therefore investigated the restriction fragment length polymorphisms of the human GR gene locus (GRL) and have sought associations of specific alleles with anthropometric measurements and indices of insulin secretion and resistance in obesity. Fifty-six extremely obese, unrelated, nondiabetic premenopausal British Caucasian females and 43 age-matched, normal weight controls were studied. The obese subjects were characterized by fat distribution (waist to hip ratio), insulin secretion and insulin resistance (fasting insulin (FI)), an index of insulin resistance (HOMA), stimulated insulin secretion during an oral glucose tolerance test and insulin-mediated glucose disposal, steady-state plasma glucose). A BclI polymorphism (fragments of 4·5 and 2·3 kb) demonstrated significant association with indices of glucose metabolism in obesity; those subjects homozygous for the 4·5 kb fragment had elevated FI (Pc=0·012) and HOMA (Pc=0·012) values. The genotypic and allelic frequencies of the GRL BclI polymorphism were otherwise similar in obese and normal weight subjects. We postulate that the GRL BclI polymorphism may directly affect GR gene expression, or be in linkage disequilibrium with a possible mutation within one of three exons of the GR gene, and thereby modulate GR transcriptional activity on target genes involved in glucose and insulin homeostasis.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3