Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin

Author:

Lee Simon C,Robson-Doucette Christine A,Wheeler Michael B

Abstract

Currently, the physiological function of uncoupling protein-2 (UCP2) in pancreatic islets and its role in the development of diabetes is a matter of great debate. To further investigate the impact of UCP2 on diabetes development, we used streptozotocin (STZ) to experimentally generate diabetes in both wild-type (WT) and UCP2-knockout (UCP2KO) mice. While multiple low-dose STZ injections led to hyperglycemia development over a 14-day period in both WT and UCP2KO mice, we found the development of hyperglycemia to be significantly less severe in the UCP2KO mice. Measurement of insulin and glucagon secretion (in vitro), as well as their plasma concentrations (in vivo), indicated that UCP2-deficiency showed enhanced insulin secretion but impaired α-cell function. Glucagon secretion was attenuated, despite reduced insulin secretion after exposure to STZ, which together contributed to less severe hyperglycemia development in UCP2KO mice. Further experimentation revealed that UCP2-deficient α- and β-cells had chronically higher cellular reactive oxygen species (ROS) levels than the WT prior to STZ application, which correlated with increased basal β- and α-cell mass. Overall, we suggest that increased chronic ROS signaling as a result of UCP2-deficiency contributes to enhanced β-cell function and impairment of α-cell function, leading to an attenuation of STZ-induced hyperglycemia development.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3