Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells

Author:

Yuan Ta-Chun,Veeramani Suresh,Lin Fen-Fen,Kondrikou Dmitry,Zelivianski Stanislav,Igawa Tsukasa,Karan Dev,Batra Surinder K.,Lin Ming-Fong

Abstract

Neuroendocrine (NE) cells are the minor cell populations in normal prostate epithelial compartments. During prostate carcinogenesis, the number of NE cells in malignant lesions increases, correlating with its tumorigenicity and hormone-refractory growth. It is thus proposed that cancerous NE cells promote prostate cancer (PCa) cell progression and its androgen-independent proliferation, although the origin of the cancerous NE cells is not clear. To investigate the role of cancerous NE cells in prostate carcinogenesis, we characterized three NE subclone cell lines–NE-1.3, NE-1.8 and NE-1.9, which were transdifferentiated from androgen-sensitive human PCa LNCaP cells by culturing in an androgen-depleted environment, resembling clinical androgen-ablation therapy. These subclone cells acquire many features of NE cells seen in clinical prostate carcinomas, for example exhibiting a neuronal morphology and expressing multiple NE markers, including neuron-specific enolase, chromogranin B, neurotensin, parathyroid hormone-related peptide, and to a lesser degree for chromogranin A, while lacking androgen receptor (AR) or prostate specific antigen (PSA) expression. These cells represent terminally differentiated stable cells because after 3 months of re-culturing in a medium containing androgenic activity, they still retained the NE phenotype and expressed NE markers. Despite these NE cells having a slow growth rate, they readily developed xenograft tumors. Furthermore, media conditioned by these NE cells exhibited a stimulatory effect on proliferation and PSA secretion by LNCaP cells in androgen-deprived conditions. Additionally, we found that receptor protein tyrosine phosphatase α plays a role in upregulating multiple NE markers and acquiring the NE phenotype. These NE cells thus represent cancerous NE cells and could serve as a useful cell model system for investigating the role of cancerous NE cells in hormone-refractory proliferation of PCa cells.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3