Radiotherapy-induced signal transduction

Author:

Yacoub Adly,Miller Anna,Caron Ruben W,Qiao Liang,Curiel David A,Fisher Paul B,Hagan Michael P,Grant Steven,Dent Paul

Abstract

Exposure of tumor cells to ionizing radiation causes compensatory activation of multiple intracellular survival signaling pathways to maintain viability. In human carcinoma cells, radiation exposure caused an initial rapid inhibition of protein tyrosine phosphatase function and the activation of ERBB receptors and downstream signaling pathways. Radiation-induced activation of extracellular regulated kinase (ERK)1/2 promoted the cleavage and release of paracrine ligands in carcinoma cells which caused re-activation of ERBB family receptors and intracellular signaling pathways. Blocking ERBB receptor phosphorylation or ERK1/2 pathway activity using small-molecule inhibitors of kinases for a short period of time following exposure (3 h) surprisingly protected tumor cells from the toxic effects of ionizing radiation. Prolonged exposure (48–72 h) of tumor cells to inhibition of ERBB receptor/ERK1/2 function enhanced radiosensitivity. In addition to ERBB receptor signaling, expression of activated forms of RAS family members and alterations in p53 mutational status are known to regulate radiosensitivity apparently independent of ERBB receptor function; however, changes in RAS or p53 mutational status, in isogenic HCT116 cells, were also noted to modulate the expression of ERBB receptors and ERBB receptor paracrine ligands. These alterations in receptor and ligand expression correlated with changes in the ability of HCT116 cells to activate ERK1/2 and AKT after irradiation, and to survive radiation exposure. Collectively, our data in multiple human carcinoma cell lines argues that tumor cells are dynamic and rapidly adapt to any single therapeutic challenge, for example, radiation and/or genetic manipulation e.g. loss of activated RAS function, to maintain tumor cell growth and viability.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3