Affiliation:
1. 1Department of Gynaecological OncologyWestmead Hospital2Westmead Institute for Cancer Research3Department of Medicine and 4University of Sydney at Westmead Millennium InstituteWestmead, New South Wales 2145, Australia
Abstract
Epithelial ovarian cancer, the leading cause of death from gynecological malignancy in Western countries, is thought to arise from the ovarian surface epithelium (OSE). It has been postulated that the constant rounds of proliferation and repair following ovulation contributes to neoplastic transformation. However, there is little information on the genes and pathways which are involved in the normal functions of the ovarian epithelium, in particular genes that are hormone responsive and those central to functions such as proliferation and apoptosis during ovulation. We used laser microdissection and cDNA microarrays to profile gene expression specifically in mouse ovarian epithelial cells, first compared with other ovarian cells, and secondly between ovarian epithelium collected at different physiological stages. We identified over 1000 transcripts that were consistently more highly expressed in the ovarian epithelium compared with remaining ovarian cell types, including genes involved in cell growth, transcription, and cell adhesion. At the various physiological stages examined, the highest number of regulated genes was found during the estrous cycle, specifically on the evening of proestrus, coincident with the ovulatory surge of hormones and just prior to ovulation. The expression of several selected genes, identified by the microarray analysis, including Villin 2, Keratin 8, Arginine-rich mutated in epithelial tumors, and Tumor-associated calcium signal transducer 1, was validated by independent methods. The identification of genes expressed and regulated in the OSE, and characterization of the pathways involved, will contribute to a more detailed understanding of the ovarian epithelium transcriptome and ultimately lead to a better understanding of the aberrations leading to malignant transformation in the ovarian epithelium.
Subject
Endocrinology,Molecular Biology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献