Dietary protein deprivation upregulates insulin signaling and inhibits gluconeogenesis in rat liver

Author:

Toyoshima Yuka111,Tokita Reiko1,Ohne Yoichiro1,Hakuno Fumihiko1,Noguchi Tadashi1,Minami Shiro1,Kato Hisanori11,Takahashi Shin-Ichiro1

Affiliation:

1. Departments of1Applied Biological Chemistry2Animal SciencesGraduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan3The Chubu Institute for Advanced StudiesChubu University, Kasugai, Aichi 487-8501, Japan4Department of BioregulationNippon Medical School, Kawasaki, Kanagawa 211-8533, Japan5Organization for Interdisciplinary Research ProjectsThe University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Abstract

This study was undertaken to elucidate the effects of dietary protein deprivation on glucose metabolism and hepatic insulin signaling in rats. The results of glucose and pyruvate tolerance tests in rats fed with a 12% casein diet (12C) and a protein-free diet (PF) indicated that protein deprivation enhanced clearance of blood glucose and suppressed gluconeogenesis. Correspondingly, the mRNA level of hepatic phosphoenolpyruvate carboxykinase, a key gluconeogenic enzyme, was suppressed by dietary protein deprivation. In PF-fed rats, total tyrosine phosphorylation of insulin receptor (IR) in the liver induced by insulin injection was enhanced compared with 12C pair-fed rats due to an increase in IR protein level. In addition, protein deprivation caused an increase in protein levels of IR substrate 1 (IRS1) and IRS2, leading to the marked enhancement of insulin-induced tyrosine phosphorylation of IRS2 and its binding to the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K). Based on these results, we conclude that protein deprivation suppresses gluconeogenesis by a mechanism primarily mediated by the enhancement of the insulin signals through the IR/IRS/PI3K/mammalian target of rapamycin complex 1 pathway in the liver. Taken together with our previous report, these findings suggest that tissue-specific potentiation of insulin action in the liver and the skeletal muscle plays important roles in maintaining glucose homeostasis even when energy usage is reduced by dietary protein deprivation.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3