Further characterization of the second oestrogen-binding species of the rat granulosa cell

Author:

Kudolo G. B.,Elder M. G.,Myatt L.

Abstract

ABSTRACT Rat granulosa cell cytosol contains a second oestrogen-binding species (SOB) distinguished from the classical oestrogen receptor by its lower dissociation constant (approx. 45 nmol/l) and the ability to bind oestrogens, antioestrogens, androgens and progesterone but not diethylstilboestrol. The SOB and the oestrogen receptor can be further distinguished by their differential adsorption to spheroidal hydroxylapatite and Concanavalin A–Sepharose. Addition of chaotropic salts or molybdate to granulosa cell cytosol did not alter the concentration of SOB or oestrogen receptor measured, indicating that there are no 'masked' binding sites in the two species caused by aggregation phenomena. The association rate of oestradiol with SOB at 4°C (1·72 ± 0·27(s.e.m.) × 108 mol/h) and 25°C (4·50 ± 0·36 × 108 mol/h) was faster than with the oestrogen receptor (7·20 ± 0·15 × 107 mol/h and 1·23 ± 0·15 × 108 mol/h respectively). The biphasic dissociation kinetics of [3H]oestradiol from the oestrogen receptor at 25°C (rate constants k−1 = 0·30±0·07/min and k−2 = 3·73±0·57 × 10−3/min) were similar to those reported in other target tissues but the dissociation of [3H]oestradiol from SOB appeared to be much more rapid and could not be measured by the Sephadex LH-20 separation method employed for determining receptor kinetics. Using sucrose density-gradient (SDG) analysis and Sephacryl S-200 gel chromatography the oestrogen receptor fractionated in an aggregated form (10·3S, Stokes radius >5·2 nm) in low ionic strength buffers and as a small species (4·4S, Stokes radius 3·5 nm) in buffers containing 0·4 m-KCl. However, the SOB fractionated as 2–3S, Stokes radius 3·7–4·0 nm at low ionic strength and as 5·8S, Stokes radius 3·5 nm in 0·4 m-KCl. In contrast to the receptor from other target tissues the granulosa cell oestrogen receptor did not bind to the artificial acceptor matrix oligo(dT)-cellulose and heat activation did not promote a 4S to 5S conversion when analysed on SDG. The salt-extracted form of nuclear receptor sedimented at 4·6S, mol. wt 69–72 000 on SDG. J. Endocr. (1984) 102, 93–102

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3