Abstract
ABSTRACT
Peripheral plasma concentrations, metabolic clearance rates (MCR) and blood production rates (BPR) of 1α-hydroxycorticosterone (1-OH-B) were determined in female dogfish (Scyliorhinus canicula) under varying environmental conditions. The constant-infusion technique, using high specific activity tritiated 1-OH-B, was applied to measure the MCR, and BPR were derived from the product of plasma concentration and MCR at equilibrium. Urea plasma clearances and apparent BPR were assessed in a similar manner. Fish were adapted stepwise to 140, 120, 90, 80, 70, 60 and 50% normal sea water (about 1000 mosmol/l). In all cases 1-OH-B was the major corticosteroid, cortisol and corticosterone were sought but never detected.
In environments of reduced osmolarity, plasma osmolarity, sodium, chloride and urea concentrations all declined, alongside increases in plasma concentrations, MCR and BPR of 1-OH-B. In fish held in environments at concentrations greater than normal sea water, plasma osmolarity, sodium, chloride and urea concentrations all increased. Plasma clearance of urea increased in fish held in environments more dilute than sea water, while it decreased in the more hyperosmotic waters. It is tentatively concluded that homeostasis of plasma composition, with particular respect to urea, is in part regulated by 1-OH-B in the dogfish.
J. Endocr. (1984) 103, 205–211
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献