Renal adenylate cyclase assay for biologically active parathyroid hormone: clinical utility and physiological significance

Author:

Auf'mkolk B.,Hesch R.-D.

Abstract

ABSTRACT The stimulation of cyclic AMP production by human renal cortical membranes in the presence of the GTP analogue 5′-guanylimidodiphosphate and a calcium chelator represents a homologous assay system for the evaluation of biologically active parathyroid hormone (bioPTH) in human serum. Bioactive PTH was raised above normal (normal range: undetectable to 4·6 pmol human PTH(1–34) per 1) in 13/17 (76%) patients with primary hyperparathyroidism, in 5/6 (83%) patients with surgically proven hyperparathyroidism secondary to chronic renal failure, in 4/5 (80%) patients with hyperparathyroidism secondary to hypocalcaemia, in all three patients with pseudohypoparathyroidism, in 5/17 (29%) patients with osteoporosis and in 1/9 (11%) patients with renal stones and/or hypercalciuria. Bioactive PTH correlated positively with immunoreactive PTH (iPTH) measured with a radioimmunoassay predominantly recognizing the middleand carboxyl-terminal region of the PTH molecule (r = 0·503, P<0·001). A positive correlation (r = 0·572, P<0·05) was found between values of serum calcium and bioPTH in the group with primary hyperparathyroidism. Immunoreactive PTH did not correlate significantly with calcium in this group. In the other patients except those who had chronic renal failure, a negative correlation between serum calcium and both bioPTH and iPTH was observed (P<0·01). When alkaline phosphatase was compared with bioPTH in all patients, the correlation was positive (r = 0·390, P<0·01); no significant correlation existed between iPTH and alkaline phosphatase in the patients studied. When comparing the metabolic status of the bones with bioPTH, there was a higher incidence of severe bone lesions in those patients with primary hyperparathyroidism who had extremely raised levels of bioPTH. In osteoporosis no simple relationship was apparent. J. Endocr. (1986) 108, 9–15

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3