The actions of N-terminal fragments of corticotrophin on steroidogenesis in dispersed rat adrenal cells in vitro

Author:

Vinson G. P.,Whitehouse B. J.,Bateman A.,Dell A.,Laird S. M.

Abstract

ABSTRACT The finding that the rat adrenal zona glomerulosa cell shows specific sensitivity to stimulation by α-MSH and related peptides has been confirmed both in vivo and in vitro, raising the possibility that α-MSH may have a physiological role in the control of glomerulosa function and aldosterone secretion. To define more closely the structural features which confer the specificity of the glomerulosa response, other ACTH derived peptides have been tested for their specificity of actions on rat adrenal cells in vitro. The peptides tested were ACTH(5–24), ACTH(1–12), ACTH(1–14), ACTH(1–15), ACTH1–16) and ACTH(1–17). Their actions were compared with those of α-MSH and ACTH(1–24). All of the ACTH-derived peptides stimulated glomerulosa corticosterone production with sensitivities similar to that of α-MSH; minimum effective concentration was 10 nmol/l. Also, like α-MSH, the shorter ACTH peptides stimulated aldosterone production only relatively weakly in these cells from animals on normal sodium intake. Only ACTH(5–24), ACTH(1–16) and ACTH(1–17) stimulated fasciculata/reticularis cells at concentrations up to 1 μmol/l. The actions of all of the shorter peptides were thus unlike those of ACTH(1–24) which stimulates both cell types with approximately equal sensitivity, and which furthermore strongly stimulates aldosterone production. The data suggest that the 18–24 region of the ACTH molecule contains the signal for a fasciculata/ reticularis response, and the region 1–13 that for glomerulosa specificity. They confirm the view that, in the rat, α-MSH itself may be the specific pituitary glomerulosa-stimulating agent which much experimental work has predicted. They also indicate that synthetic ACTH(1–17) analogues should be used with caution. J. Endocr. (1986) 109, 275–278

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3