Supraoptic neurones in Brattleboro rats respond normally to changes in plasma osmotic pressure

Author:

Dyball R. E. J.,Leng G.

Abstract

ABSTRACT Brattleboro rats homozygous for hypothalamic diabetes insipidus (DI rats) were anaesthetized with urethane. Extracellular recordings were made from antidromically identified neurones of the supraoptic nucleus. About half (77 out of 153) of the neurones recorded in DI rats showed phasic patterns of discharge activity similar to those which are characteristic of vasopressin-secreting neurones in normal rats during hyperosmotic stimulation. Significantly fewer neurones showed phasic activity in DI rats which had been pretreated with vasopressin tannate at a dose which significantly reduced urine volume, water intake and plasma osmolality. Acute systemic hyperosmotic stimulation, induced by an i.p. injection of 1 ml 1·5 m-NaCl, increased the discharge rate of each of 14 neurones from DI rats by 1–5 spikes/s. Hypo-osmotic stimulation, induced by an intragastric injection of 10 ml tap water, reduced the discharge rate of each of four neurones from DI rats by 50% or more. We conclude that supraoptic neurones in DI rats respond normally to acute systemic osmotic stimuli despite the total absence of vasopressin in these rats and despite their chronically disturbed water balance. This implies that the osmoreceptor mechanism which drives the supraoptic nucleus does not adapt substantially during prolonged disturbance of water balance and functions outside the normal physiological range of plasma osmolality, and that the reported alteration of noradrenergic innervation of the neurones in DI rats does not affect their osmotic responsiveness. J. Endocr. (1985) 105, 87–90

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3