Mutation in the human gene for 3β-hydroxysteroid dehydrogenase type II leading to male pseudohermaphroditism without salt loss

Author:

Russell A J,Wallace A M,Forest M G,Donaldson M D C,Edwards C R W,Sutcliffe R G

Abstract

ABSTRACT A 5-year-old XY pseudohermaphrodite was found to have a defect of steroid biosynthesis consistent with a partial deficiency of the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD). Circulating concentrations of Δ5 steroids and Δ5 urinary steroid metabolites were elevated and remained elevated after orchidectomy. There was no evidence of salt loss, plasma renin being within normal limits, and no detectable glucocorticoid abnormality. The coding sequences of the genes for 3β-HSD types I and II were amplified by PCR and screened for mutations by denaturing gradient gel electrophoresis (DGGE) and manual and automatic DNA sequencing. A mutation in the gene for 3β-HSD type II was observed at codon 173 (CTA→CGA), leading in the affected patient to a homozygous substitution in which the leucine at residue 173 was altered to an arginine (L173R). The propositus's 2-year-old XX sister was also homozygous for L173R and showed the biochemical characteristics of partial 3β-HSD deficiency without clinical symptoms or signs. The mutation segregated as an autosomal recessive. Three related heterozygous adult females showed evidence of a small over-production of Δ5 steroids and steroid metabolites and a variable reduction in ovarian function. Concentrations of Δ5 steroids and steroid metabolites in the heterozygous father of the propositus were within the normal range. These data are discussed in relation to the endocrine causes of pseudohermaphroditism and hirsutism. Evidence for tight linkage between the genes for 3β-HSD types I and II was obtained using a microsatellite polymorphism in the third intron of the gene for 3β-HSD type II and synonymous and non-synonymous mutations and polymorphisms in the gene for 3β-HSD type I. The latter polymorphisms were located 88 bp apart at the 3′ end of the type I coding sequence and could be physically resolved as haplotypes using DGGE. The application of DGGE to the analysis of mutations in members of a multigene family is discussed.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3