Cloning of the human orphan receptor germ cell nuclear factor/retinoid receptor-related testis-associated receptor and its differential regulation during embryonal carcinoma cell differentiation

Author:

Lei W,Hirose T,Zhang L-X,Adachi H,Spinella M J,Dmitrovsky E,Jetten A M

Abstract

ABSTRACT We have cloned a cDNA encoding the full-length coding region of the human homologue of the germ cell nuclear factor (GCNF)/retinoid receptor-related testis-associated receptor (RTR), from a human testis cDNA library. The amino acid sequence of human GCNF/RTR is highly homologous to that of the mouse GCNF/RTR. The largest difference between the two homologues is a 15 amino acid deletion in the human GCNF/RTR at amino acid 47. The GCNF/RTR gene was localized on human chromosome 9. Northern blot analysis using poly(A)+ RNA from different human tissues showed that GCNF/RTR mRNA is most abundantly expressed in the testis. GCNF/RTR was also highly expressed in embryonic stem cells and embryonal carcinoma cells but repressed in its differentiated derivatives. Induction of differentiation of mouse embryonal carcinoma F9 cells and human embryonal carcinoma NTERA-2 clone Dl (NT2/D1) cells by all-trans retinoic acid was accompanied by a down-regulation of GCNF/RTR. Our observations suggest that GCNF/RTR plays a role in the control of gene expression in early embryogenesis and during spermatogenesis.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How does retinoic acid (RA) signaling pathway regulate spermatogenesis?;HISTOL HISTOPATHOL;2022

2. Normal stem cells;Photomedicine and Stem Cells: The Janus face of photodynamic therapy (PDT) to kill cancer stem cells, and photobiomodulation (PBM) to stimulate normal stem cells;2017

3. Revisiting the role of GCNF in embryonic development;Seminars in Cell & Developmental Biology;2013-12

4. miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing;Cell Biology and Toxicology;2013-08

5. Embryonic Stem Cell Markers;Molecules;2012-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3