Prostate cancer: molecular biology of early progression to androgen independence.

Author:

Sadar M D,Hussain M,Bruchovsky N

Abstract

To improve the therapy for prostate cancer, it will be necessary to address the problems of progression to androgen independence and the process of metastatic spread of tumour. The complexity of the latter condition is likely to mitigate against the immediate development of relevant therapeutic approaches. However, the basis of androgen independence appears to be a problem of simpler dimensions and more amenable to treatment with current therapeutic technology. Since early tumour progression can be detected by an incomplete prostate-specific antigen (PSA) response to androgen withdrawal therapy, a study of the molecular biology of PSA gene regulation may well provide insight into new methods for preventing or delaying this problem. Mounting evidence suggests that ligand-independent activation of the androgen receptor may be one underlying mechanism of androgen independence. In the absence of androgen, a compensatory increase in the activity of cAMP-dependent protein kinase (PKA) enhances the ability of the androgen receptor to bind to the response elements regulating PSA gene expression. The activation of the androgen receptor through up-regulation of the PKA signal transduction pathway involves the amino-terminus of the androgen receptor, the function of which may be altered either by modifications such as phosphorylation, or through interactions with co-regulators or other proteins. Of therapeutic interest is the fact that this effect can be counteracted experimentally by the anti-androgen, bicalutamide, and clinically by several other similar agents. We speculate that the inhibition of PKA-activated androgen receptor might also be accomplished by decoy molecules that can bind to the relevant activated site on the amino-terminus or competitively interact with proteins recruited by the PKA pathway that are responsible for activating the receptor in the absence of androgen. Such molecules might include small mimetic substances or agents that can gain access to the nucleus of the cell.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3