Author:
Wrathall J. H. M.,McLeod B. J.,Glencross R. G.,Beard A. J.,Knight P. G.
Abstract
ABSTRACT
Two experiments were conducted to explore the effectiveness of synthetic peptide-based vaccines for active and passive autoimmunization of sheep against inhibin. In the first experiment, adult Romney ewes (n = 20) were actively immunized against a synthetically produced peptide that corresponded to the N-terminus of the α-subunit of bovine inhibin (bIα(1–29)-Tyr30). This peptide was conjugated to tuberculin purified protein derivative (PPD) to increase its antigenic properties. Control groups comprised non-immunized (n = 10) and PPD-immunized (n = 10) ewes. Primary immunization (400 μg conjugate/ewe) was followed by two booster immunizations (200 μg conjugate/ewe), given 5 and 8 weeks later. Following synchronization of oestrus using progestagen sponges, ovulation rates were assessed by laparoscopy. Weekly blood samples were taken throughout the experiment. All inhibin-immunized ewes produced antibodies which bound 125I-labelled bovine inhibin (Mr 32 000), and ovulation rate in inhibin-immunized ewes (2·15 ± 0·22; mean ± s.e.m.) was significantly (P<0·01) greater than in both non-immunized (0·90 ± 0·23) and PPD-immunized (1·20 ± 0·13) control groups. Immunization against the peptide, but not against PPD alone, resulted in a modest rise in plasma FSH, with mean levels after the second boost being significantly (P<0·025) higher (22%) than those before immunization. Moreover, when blood samples were taken (2-h intervals) from randomly selected groups of control (n = 7) and inhibin-immunized (n = 7) ewes for an 84-h period following withdrawal of progestagen sponges, the mean plasma concentration of FSH during the 48 h immediately before the preovulatory LH surge was 37% greater (P< 0·025) in immunized than in control animals. However, more frequent blood sampling (every 15 min for 12 h) during follicular and mid-luteal phases of the oestrous cycle revealed no significant differences between treatment groups in mean plasma concentrations of FSH. In addition, neither mean concentrations of LH nor the frequency and amplitude of LH episodes differed between immunized and control ewes. However, the mean response of LH to a 2 μg bolus of gonadotrophin-releasing hormone, given during the luteal phase, was significantly (P<0·05) less in immunized than in control ewes. These findings indicate that active immunization of Romney ewes against a synthetic fragment of inhibin can promote a controlled increase in ovulation rate, but this response cannot be unequivocally related to an increase in plasma levels of FSH.
In the second experiment, passive immunization of seasonally anoestrous ewes (mule × Suffolk crossbred; n = 6 per group) against inhibin, using an antiserum raised in sheep against a synthetic peptide corresponding to the N-terminus of the α-subunit of human inhibin promoted a rapid (<3 h), dose-dependent rise in plasma levels of FSH which remained increased (2·5-fold; P<0·001) for up to 30 h. Plasma concentrations of LH, however, were unaffected by treatment with the antiserum. It is deduced from this observation that, even in the seasonally anoestrous ewe, the ovary secretes physiologically active levels of inhibin, which exert an inhibitory action on the synthesis and secretion of FSH.
Journal of Endocrinology (1990) 124, 167–176
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献