Identification of a non-covalent oxytocin/neurophysin-I complex in the bovine ovary

Author:

Shukovski L.,Findlay J. K.,Smith A. I.

Abstract

ABSTRACT Acid extracts of bovine preovulatory granulosa cells and corpora lutea (CL) were subjected to high-performance liquid chromatography (HPLC) and found to contain two peaks of immunoreactive (ir) oxytocin (OT), one corresponding to authentic OT and the second eluting 8 min later. The second peak was more abundant than authentic irOT in preovulatory follicles and in the early CL, but became less abundant as the CL matured (mid luteal) and was close to the limit of detection in the late CL. This peak could be detected only by an OT antiserum which recognized both the biologically active form of OT, as well as the post-translational processing intermediate Gly10-extended oxytocin. A second more specific OT antiserum (OT-933) did not recognize the second peak as strongly. Further analysis of the second peak revealed a complex of OT bound to its neurophysin (NP-I) which could be dissociated under denaturing conditions. Furthermore, we were able to create this complex in vitro by combining the two materials together under acid conditions, similar to the pH predicted in secretory granules, but not under neutral conditions. Measuring irNP-I by radioimmunoassay showed a single peak with a similar retention time to the OT/NP-I complex, confirming the identity of the unknown peak. Incubation of CL slices in culture showed a time-related release of both OT and NP-I, with OT having a greater rate of release in the mid luteal CL. These data suggest the presence of an OT/NP-I complex in the bovine preovulatory granulosa cells and CL, as well as the unbound peptide presumably within the secretory granules. The ratio of OT/NP-I complex and free peptide changes with ageing of the the CL, perhaps indicating regulated differences in the post-translational processing of the prohormone. Journal of Endocrinology (1991) 128, 305–314

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3