Effects of tri-iodothyronine, cortisol and transcriptional inhibitors on vitamin D3-enhanced thyrotrophin secretion by rat pituitary cells in vitro

Author:

d'Emden M. C.,Wark J. D.

Abstract

ABSTRACT The hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) has been shown to selectively enhance agonist-induced TSH release in the rat thyrotroph in vitro. The interaction of 1,25-(OH)2D3 with tri-iodothyronine (T3) and cortisol was studied in primary cultures of dispersed anterior pituitary cells. TRH (1 nmol/l)-induced TSH release over 1 h was enhanced by 70% (P<0·01) following exposure to 10 nmol 1,25-(OH)2D3/l for 24 h. Pretreatment with T3 (1 pmol/l–1 μmol/l) for 24 h caused a dose-dependent inhibition of TRH-induced TSH release. Net TRH-induced TSH release was inhibited by 85% at T3 concentrations of 3 nmol/l or greater. Co-incubation with 1,25-(OH)2D3 resulted in enhanced TRH-induced TSH release at all T3 concentrations tested (P<0·001). The increment of TRH-induced TSH release resulting from 1,25-(OH)2D3 pretreatment was equivalent in the presence or absence of maximal inhibitory T3 concentrations. At 1 nmol T3/1, there was a two- to threefold relative increase in 1,25-(OH)2D3-enhanced TRH-induced TSH release. Incubation with cortisol (100 pmol/l–100 nmol/l) had no effect on basal or TRH-induced TSH release, nor did it alter 1,25-(OH)2D3-enhanced TRH-induced TSH release when added 24 h before, or at the time of addition of 1,25-(OH)2D3. Actinomycin D and α-amanitin abolished 1,25-(OH)2D3-enhanced TSH secretion. These data demonstrate that the action of 1,25-(OH)2D3 in the thyrotroph required new RNA transcription, and was not affected by cortisol. In the presence of T3, the response of the thyrotroph to TRH induced by 1,25-(OH)2D3 was increased. We have shown that 1,25-(OH)2D3 has significant effects on the action of TRH and T3 in vitro. These findings support the proposal that 1,25-(OH)2D3 may modulate TSH secretion in vivo. Journal of Endocrinology (1989) 121, 451–458

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3