C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression

Author:

Diel P,Baadners D,Schlüpmann K,Velders M,Schwarz J P

Abstract

Androgens are modulators of skeletal muscle adaptation and regeneration processes. The control of satellite cell activity is a key mechanism during this process. In this study, we analyzed the ability of dihydrotestosterone (DHT) and anabolic steroids to induce and modulate the differentiation of C2C12 myoblastoma cells toward myotubes. C2C12 cells were dose-dependently treated with DHT and anabolic steroids. The time-dependent effects on differentiation were measured and correlated with the expression of genes involved in the regulation of satellite cell activity. The distribution of C2C12 cells within the cell cycle was measured by flow cytometry and differentiation by creatine kinase (CK) activity. Gene expression was analyzed using quantitative real-time PCR and confocal microscopy. The treatment with DHT and anabolic steroids resulted in a stimulation of C2C12 cell proliferation and CK activity. The antiandrogen flutamide was able to antagonize this effect. The expression of the androgen receptor, SOX8, SOX9, Delta, Notch, myostatin, and paired box gene7 (Pax7) was modulated by androgens. The treatment with DHT and anabolic steroids resulted in a strong stimulation of myostatin expression not only in undifferentiated cells but also in myotubes. The stimulation could be antagonized by flutamide. The expression of Pax7 was detectable in C2C12 cells early after treatment with DHT. Our results demonstrate that the key mechanisms of satellite cell differentiation are modulated by androgens. Androgens stimulate the proliferation of C2C12 cells, accelerate the process of differentiation, and increase the expression of myostatin in undifferentiated and differentiated cells. Our findings may have implications not only for the treatment of muscular diseases but also for the improvement of doping analytical methods.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3