Induction of glucose transporter 1 expression through hypoxia-inducible factor 1α under hypoxic conditions in trophoblast-derived cells

Author:

Hayashi Masami,Sakata Masahiro,Takeda Takashi,Yamamoto Toshiya,Okamoto Yoko,Sawada Kenjiro,Kimura Akiko,Minekawa Ryoko,Tahara Masahiro,Tasaka Keiichi,Murata Yuji

Abstract

Glucose transporter 1 (GLUT1) plays an important role in the transport of glucose in the placenta. During early pregnancy, placentation occurs in a relatively hypoxic environment that is essential for appropriate embryonic development, and GLUT1 expression is enhanced in response to oxygen deficiency in the placenta. Hypoxia-inducible factor-1 (HIF-1)α is involved in the induction of GLUT1 expression in other cells. The present study was designed to test whether HIF-1α is involved in hypoxia-induced activation of GLUT1 expression using trophoblast-derived human BeWo and rat Rcho-1 cells as models. GLUT1 mRNA and protein expression were elevated under 5% O2 or in the presense of cobalt chloride, which has been shown to mimic hypoxia. Using rat GLUT1 (rGLUT1) promoter–luciferase constructs, we showed that this up-regulation was mediated at the transcriptional level. Deletion mutant analysis of the rGLUT1 promoter indicated that a 184 bp hypoxia-responsive element (HRE) of the promoter was essential to increase GLUT1 reporter gene expression in response to low-oxygen conditions. BeWo and Rcho-1 cells cultured under 5% O2 or with CoCl2 showed increased expression of HIF-1α protein compared with those cultured under 20% O2. To test whether this factor is directly involved in hypoxia-induced GLUT1 promoter activation, BeWo and Rcho-1 cells were transiently transfected with an HIF-1α expression vector. Exogeneous HIF-1α markedly increased the GLUT1 promoter activity from constructs containing the HRE site, while the GLUT1 promoter constructs lacking the HRE site were not activated by exogenous HIF-1α These data demonstrate that GLUT1 is up-regulated under 5% O2 or in the presence of CoCl2 in the placental cell lines through HIF-1α interaction with a consensus HRE site of the GLUT1 promoter.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3