Reduction of hepatic glucocorticoid receptor and hexose-6-phosphate dehydrogenase expression ameliorates diet-induced obesity and insulin resistance in mice

Author:

Liu Yanjun,Nakagawa Yuichi,Wang Ying,Liu Limei,Du Hongwei,Wang Wei,Ren Xiuhai,Lutfy Kabirullah,Friedman Theodore C

Abstract

Intracellular glucocorticoid (GC) receptor (GR) function determines tissue sensitivity to GCs and strongly affects the development of type 2 diabetes and obesity. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) mediates intracellular steroid exposure to mouse liver GR by prereceptor reactivation of GCs and is crucially dependent on hexose-6-phosphate dehydrogenase (H6PDH)-generating NADPH system. Pharmacological inhibition of 11β-HSD1 improves insulin intolerance and obesity. Here, we evaluated the potential beneficial effects of 11β-HSD1 inhibitor carbenoxolone (CBX) in diet-induced obese (DIO) and insulin-resistant mice by examining the possible influence of CBX on the expression of GR, 11β-HSD1, and H6PDH in vivo and in vitro in hepatocytes. Treatment of DIO mice with CBX markedly reduced hepatic GR mRNA levels and reduced weight gain, hyperglycemia, and insulin resistance. The reduction of hepatic GR gene expression was accompanied by CBX-induced inhibition of both 11β-HSD1 and H6PDH activity and mRNA in the liver. Moreover, CBX treatment also suppressed the expression of both phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase enzyme (G6Pase) mRNA and improved hepatic [1, 2-3H] deoxy-d-glucose uptake in DIO mice. In addition, the treatment of primary cultures of hepatocytes with increasing concentrations of CBX led to a dose-dependent downregulation of GR mRNA levels, which correlated with the suppression of both 11β-HSD1 and H6PDH activity and their gene expression. Addition of CBX to primary hepatocytes also resulted in suppression of both PEPCK and G6Pase mRNA levels. These findings suggest that CBX exerts some of its beneficial effects, at least in part, by inhibiting hepatic GR and H6PDH expression.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3