Eph receptors and zonation in the rat adrenal cortex

Author:

Brennan Caroline H,Chittka Alexandra,Barker Stewart,Vinson Gavin P

Abstract

Although the zonation of the adrenal cortex has a clear functional role, the mechanisms that maintain it remain largely conjectural. The concept that an outer proliferative layer gives rise to cells that migrate inwards, adopting sequentially the zona glomerulosa, fasciculata and reticularis phenotypes, has yet to be explained mechanistically. In other tissues, Eph receptor (EphR)/ephrin signalling provides a mechanism for cellular orientation and migration patterns. Real-time PCR and other methods were used to determine the possible role of Eph/ephrin systems in the rat adrenal. mRNA coding for several members of the EphR family was detected, but out of these, EphA2 provided the closest parallel to zonal organisation. In situ hybridisation showed that EphA2 mRNA and EphA protein were predominantly located in the zona glomerulosa. Its transcription closely reflected expected changes in the glomerulosa phenotype, thus it was increased after a low-sodium diet, but decreased by pretreatment with the angiotensin-converting enzyme inhibitor, captopril. It was also decreased by ACTH treatment, but unaffected by betamethasone. mRNA coding for ephrin A1, the major ligand for the EphA receptors, was also detected in the rat adrenal, though changes evoked by the various pretreatments did not clearly reflect the expected changes in zonal function. Because the maintenance of cellular zonation requires clear positional signals within the adrenal cortex, these data support a role for Eph forward and reverse signalling in the maintenance of adrenocortical zonation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3