Author:
Sakai Noriko,Terami Hiromi,Suzuki Shinobu,Haga Megumi,Nomoto Ken,Tsuchida Nobuko,Morohashi Ken-ichirou,Saito Naoaki,Asada Maki,Hashimoto Megumi,Harada Daisuke,Asahara Hiroshi,Ishikawa Tetsuya,Shimada Fumiki,Sakurada Kazuhiro
Abstract
Nuclear receptor subfamily 5, group A, member 1 (NR5A1 previously known as SF-1/AD4BP) is a transcription factor involved in the development of adrenal/gonadal tissues and steroidogenic linage cell differentiation in adult somatic stem cells. To understand the cellular signaling network that regulates NR5A1 gene expression, loss of function screening with an siRNA kinome library, and gain of function screening with an addressable full-length cDNA library representing one quarter of the human genome was carried out. The NR5A1 gene expression was activated in mesenchymal stem cells by siRNA directed against protein kinase C (PKC)-δ, erb-B3, RhoGAP (ARHGAP26), and hexokinase 2, none of which were previously known to be involved in the NR5A1 gene expression. Among these, we identified crosstalk between erb-B3 and PKC-δ signaling cascades. In addition, the gain of function studies indicated that sex-determining region Y (SRY)-box 15 (SOX15), TEA domain family member 4, KIAA1257 (a gene of unknown function), ADAM metallopeptidase with thrombospondin type 1 motif 6, Josephin domain containing 1, centromere protein, TATA box-binding protein-associated factor 5-like RNA polymerase, and inducible T-cell co-stimulator activate NR5A1 gene expression. These results provide new insights into the molecular mechanisms of NR5A1 gene expression.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献